
Week 4 – Monday

 What did we talk about last time?
 Stack implementation with arrays
 Queues

Bitmap Manipulator

 A queue is a simple data structure that has three basic
operations (very similar to a stack)
 Enqueue Put an item at the back of the queue
 Dequeue Remove an item from the front of the queue
 Front Return the item at the front of the queue

 A queue is considered FIFO (First In First Out) or LILO (Last In
Last Out)

 A circular array is just a regular array
 However, we keep a start index as well as a size that lets us

start the array at an arbitrary point
 Then, the contents of the array can go past the end of the

array and wrap around
 The modulus operator (%) is a great way to implement the

wrap around

1. Starting array

2. Enqueue 9

3. Dequeue

4. Dequeue

5. Enqueue 14

6. Dequeue
18 3 21 9

Start Size = 4

7 18 3 21 9

Start Size = 5

7 18 3 21

Start Size = 4

14 3 21 9

Start Size = 4

14 21 9

Start Size = 3

3 21 9

Start Size = 3

 Advantages:
 Dequeue is Θ(1)
 Front is Θ(1)

 Disadvantages
 Enqueue is Θ(n) in the very worst case, but not in the amortized case

public class ArrayQueue {
private E[] data = (E[]) new Object[10];
private int start = 0;
private int size = 0;

public void enqueue(E value) {}
public E dequeue() {}
public E front() {}
public int size() {}

}

 Java does have a Stack class which extends Vector
 The Deque (double ended queue, pronounced like deck)

interface is preferred
 A double ended queue can be used as either stack or queue

Stack
Operation Deque Method

Push addFirst(T element)

Pop removeFirst()

Top peekFirst()

Size size()

Queue
Operation Deque Method

Enqueue addLast(T element)

Dequeue removeFirst()

Front peekFirst()

Size size()

 Since Deque is an interface, we have to have classes that can
implement it

 ArrayDeque is an implementation of a double ended queue that
uses a circular array for backing

 Probably the best choice for both queues and stacks in terms of
speed and memory use
 addFirst() (push) is Θ(1) amortized
 addLast() (enqueue) is Θ(1) amortized
 removeFirst() (pop and dequeue) is Θ(1)
 peekFirst() (top and front) is Θ(1)

 Good old LinkedList is an implementation of a double-
ended queue that uses a doubly-linked list for backing

 Generally slower than ArrayDeque, but the important
operations are Θ(1) without being amortized
 addFirst() (push) is Θ(1)
 addLast() (enqueue) is Θ(1)
 removeFirst() (pop and dequeue) is Θ(1)
 peekFirst() (top and front) is Θ(1)

 A priority queue is like a regular queue except that items are
not always added at the end

 They are added to the place they need to be in order to keep
the queue sorted in priority order

 Not all requests are created equal
 A higher priority job can come along and jump in front of a lower

priority job
 Unfortunately, we have to wait for the heap data structure to

implement priority queues efficiently

 What is a linked list?
 Why not just use (dynamic) arrays for everything?

X

head

23 47 58

 Insert at front (or back)
 Θ(1)

 Delete at front (or back)
 Θ(1)

 Arbitrary amounts of storage with low overhead

 Search
 Θ(n)

 Go to index
 Θ(n)

 Potentially significant memory overhead if data is small
 Much easier to make pointer and memory errors (especially in

C/C++)

 Class protecting nodes implementation
 Generic class providing nodes with arbitrary type
 Generic class with the addition of iterators

 I'm glad you asked
 They allow a collection to be used in an enhanced for loop
 So, what's an enhanced for loop?

 It allows you to read (but not change) each value in a list

public static int sum(int[] array) {
int total = 0;
for (int value: array)

total += value;
return total;

}

 Enhanced for loops work for any iterable list of any type

public static double weigh(LinkedList<Wombat> list) {
double total = 0.0;
for (Wombat wombat: list)

total += wombat.getWeight();
return total;

}

public static double weigh(ArrayList<Wombat> list) {
double total = 0.0;
for (Wombat wombat: list)

total += wombat.getWeight();
return total;

}

public static double weigh(Wombat[] list) {
double total = 0.0;
for (Wombat wombat: list)

total += wombat.getWeight();
return total;

}

 Node consists of data and a single next pointer
 Advantages: fast and easy to implement
 Disadvantages: forward movement only

X

head

23 47 58

 Node consists of data, a next pointer, and a previous pointer
 Advantages: bi-directional movement
 Disadvantages: slower, 4 pointers must change for every

insert/delete
Xhead

23 47 58

X tail

 You are given a singly linked list
 It may have a loop in it, that is, a node that points back to an

earlier node in the list
 If you try to visit every node in the list, you’ll be in an infinite

loop
 How can you see if there is a loop in a linked list?

 Implementation of a linked list
 Circular linked lists and skip lists
 Implementing a stack with a linked list

 Keep reading section 1.3
 Keep working on Project 1
 Due this Friday, September 20 by midnight

 Exam 1 next Monday

	COMP 2100
	Last time
	Questions?
	Project 1
	Queues
	Queue
	Circular array
	Circular array example
	Circular array implementation
	Circular array implementation
	Circular Array Front
	Circular Array Get Size
	Circular Array Enqueue
	Circular Array Dequeue
	JCF Stacks and Queues
	Deque<T>
	ArrayDeque<T>
	LinkedList<T>
	Priority queues
	Linked Lists
	Linked lists
	Pros
	Cons
	Implementations
	Levels of flexibility
	Wait, what's an iterator?
	So what?
	Singly linked list
	Doubly linked list
	Interview question
	Upcoming
	Next time…
	Reminders

